Numerical calculation of granular entropy.

نویسندگان

  • Daniel Asenjo
  • Fabien Paillusson
  • Daan Frenkel
چکیده

We present numerical simulations that allow us to compute the number of ways in which N particles can pack into a given volume V. Our technique modifies the method of Xu, Frenkel, and Liu [Phys. Rev. Lett. 106, 245502 (2011)] and outperforms existing direct enumeration methods by more than 200 orders of magnitude. We use our approach to study the system size dependence of the number of distinct packings of a system of up to 128 polydisperse soft disks. We show that, even though granular particles are distinguishable, we have to include a factor 1=N! to ensure that the entropy does not change when exchanging particles between systems in the same macroscopic state. Our simulations provide strong evidence that the packing entropy, when properly defined, is extensive. As different packings are created with unequal probabilities, it is natural to express the packing entropy as S = − Σ(i)p(i) ln pi − lnN!, where pi denotes the probability to generate the ith packing. We can compute this quantity reliably and it is also extensive. The granular entropy thus (re)defined, while distinct from the one proposed by Edwards [J. Phys. Condens. Matter 2, SA63 (1990)], does have all the properties Edwards assumed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ivestigation of Entropy Generation in 3-D Laminar Forced Convection Flow over a Backward Facing Step with Bleeding

A numerical investigation of entropy generation in laminar forced convection of gas flow over a backward facing step in a horizontal duct under bleeding condition is presented. For calculation of entropy generation from the second law of thermodynamics in a forced convection flow, the velocity and temperature distributions are primary needed. For this purpose, the three-dimensional Cartesian co...

متن کامل

A conservative and entropy scheme for a simplified model of granular media

In this paper, we present a numerical scheme for a non linear FokkerPlanck equation of one-dimensional granular medium. We consider a kinetic description of a system of particles undergoing nearly elastic particles and interacting with a thermal bath. We construct a numerical method which preserve all the properties of the continuous model, conservation laws and decay of the entropy. Moreover t...

متن کامل

Granular entropy: explicit calculations for planar assemblies.

This paper proposes a new volume function for calculation of the entropy of planar granular assemblies. This function is extracted from the antisymmetric part of a new geometric tensor and is rigorously additive when summed over grains. It leads to the identification of a conveniently small phase space. The utility of the volume function is demonstrated on several case studies, for which we cal...

متن کامل

Entropy generation calculation for laminar fully developed forced flow and heat transfer of nanofluids inside annuli

In this paper, second law analysis for calculations of the entropy generation due to the flow andheat transfer of water-Al2O3 and ethylene glycol-Al2O3 nanofluids inside annuli is presented. Thephysical properties of the nanofluids are calculated using empirical correlations. Constant heatfluxes at inner surface of the annuli are considered and fully developed condition for fluid flowand heat t...

متن کامل

Hyperbolic relaxation models for granular flows

In this work we describe an efficient model for the simulation of a two-phase flow made of a gas and a granular solid. The starting point is the two-velocity two-pressure model of Baer-Nunziato [1]. The model is supplemented by a relaxation source term in order to take into account the pressure equilibrium between the two phases and the granular stress in the solid phase. We show that the relax...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 112 9  شماره 

صفحات  -

تاریخ انتشار 2014